Quantum leap triggers arms race revolution
China and the United States are now in a high-tech struggle for economic and military supremacy
Quantum technology, which makes use of the surprising and often counterintuitive properties of the subatomic universe, is revolutionizing the way information is gathered, stored, shared and analyzed.
The commercial and scientific potential of the quantum revolution is vast, but it is in national security that it is making the biggest waves. National governments are by far the heaviest investors in quantum research and development.
Quantum technology promises breakthroughs in weapons, communications, sensing and computing technology that could change the world’s balance of military power.
The potential for strategic advantage has spurred a major increase in funding and research and development in recent years.
The three key areas of quantum technology are computing, communications and sensing. Particularly in the United States and China, all three are now seen as crucial parts of the struggle for economic and military supremacy.
Developing quantum technology isn’t cheap. Only a small number of states have the organizational capacity and technological know-how to compete.
Significant research
Russia, India, Japan, the European Union and Australia have established significant research and development programs. But China and the US hold a substantial lead in the new quantum race.
And the race is heating up. In 2015 the US was the world’s largest investor in quantum technology, having spent around US$500 million dollars. By 2021, this investment had grown to almost $2.1 billion.
However, Chinese investment in the same period expanded from $300 million to an estimated $13 billion.
The leaders of the two nations, Joe Biden and Xi Jinping, have both emphasized the importance of quantum technology as a critical national security tool.
The US federal government has established a “three pillars model” of research, under which federal investment is split between civilian, defense and intelligence agencies.
In China, information on quantum security programs is more opaque, but the People’s Liberation Army is known to be supporting research through its own military science academies, as well as extensive funding programs in the broader scientific community.
Advances in quantum computing could result in a leap in artificial intelligence and machine learning.
This might improve the performance of lethal autonomous weapons systems – which can select and engage targets without human oversight. It would also make it easier to analyze the large data sets used in defense intelligence and cyber security.
Improved machine learning may also confer a major advantage in carrying out – and defending against – cyberattacks on both civilian and military infrastructure.
The most powerful quantum computer as far as we know is made by the US company IBM, which works closely with US defense and intelligence.
Quantum communication systems can be completely secure and unhackable. Quantum communication is also required for networking computers. This is expected to enhance computational power exponentially.
Stealth systems
China is the clear global leader here. A quantum communication network using ground and satellite connections already links Beijing, Shanghai, Jinan, and Heifei.
China’s prioritization of secure quantum communications is likely linked to revelations of US covert global surveillance operations. The US has been by far the most advanced and effective communications, surveillance and intelligence power for the past 70 years.
But China could change that. Quantum computing and communications hold out the promise of future advantage.
Still, quantum technology closest to military deployment today is quantum sensing. It offers more sensitive detection and measurement of the physical environment.
Existing stealth systems, including the latest generation of warplanes and ultra-quiet nuclear submarines, may no longer be so hard to spot.
Superconducting quantum interference devices, or SQUIDs, which can make extremely sensitive measurements of magnetic fields, are expected to make it easier to detect submarines underwater in the near future.
At present, undetectable submarines armed with nuclear missiles are regarded as an essential deterrent against nuclear war because they could survive an attack on their home country and retaliate against the attacker.
Networks of more advanced SQUIDs could make these submarines more detectable and vulnerable in the future, upsetting the balance of nuclear deterrence and the logic of mutually assured destruction.
The US is integrating quantum cooperation agreements into existing alliances such as NATO, as well as into more recent strategic arrangements.
Security pact
They include the AUKUS security pact between Australia, the UK and the US, and the Quadrilateral Security Dialogue, or the Quad, between Australia, India, Japan, and the US.
China already cooperates with Russia in many areas of technology, and events may well propel closer quantum cooperation.
In the Cold War between the US and the USSR, nuclear weapons were the transformative technology. International standards and agreements were developed to regulate them and ensure some measure of safety and predictability.
In much the same way, new accords and arrangements will be needed as the quantum arms race heats up.
Stuart Rollo is a Postdoctoral Research Fellow at the University of Sydney.
This article is republished from The Conversation under a Creative Commons license. Read the original article.
The views and opinions expressed in this article are those of the author and do not necessarily reflect the official policy of China Factor.